
Improving the SMS Security and Data Capacity using Advanced
Encryption Standard (AES) and Huffman Compression

LAURENTINUS1*, Harrizki Arie PRADANA2, Dwi Yuny SYLFANIA3, and
Fransiskus Panca JUNIAWAN

1,2,3,4 Department of Computer Science, STMIK Atma Luhur, Jl. Jend. Sudirman, Pangkalpinang,
Indonesia

E-mail: 1laurentinus@atmaluhur.ac.id, 2harrizkiariep@atmaluhur.ac.id,
3dysylfania@atmaluhur.ac.id, 4fransiskus.pj@atmaluhur.ac.id

Keywords: SMS, Cryptography, Compression, Advances Encryption Standard, Huffman.

Abstract. The development of technology that increasingly rapidly has a significant influence on

telecommunications. One feature of cellular telephones is SMS (Short Message Service). Still, this

facility in the form of SMS (Short Message Service) has a vulnerability in the way of information

leakage. Therefore an encryption application is proposed using OOP (Object Oriented Programming)

method with Waterfall's model and (Unified Modeling Language) as tools. To the maintenance of the

confidentiality of a message, it required AES (Advanced Encryption Standard) cryptography.

Cryptography AES (Advanced Encryption Standard) had functions to encode messages into the form

of ciphertext. The results of characters from encryption will usually have more than before because

there is an addition to the cipher on each encrypted data. Therefore, Huffman algorithm compression

is needed for text compression so that the results of encrypted messages become less. The purpose of

this study is to maintain the confidentiality of messages. The results obtained in this study are

differences in the number of text encryption characters AES (Advanced Encryption Standard) with

the addition of Huffman compression, which is 17.35%. The implementation of this message

application was successfully implemented using the AES algorithm and the Huffman algorithm. The

message is not can be read by the service center, and the number of characters sent messages can

compress into fewer.

Introduction

The mobile phone provides various features, one of the most popular feature is SMS (Short

Message Service). SMS is a one of mobile phone service that allows users to communicate with each

other by sending short messages in the form of text instantly and for a small fee. SMS is not securing

the messages so we are not suppose to send a sensitive or confidential message. Therefore we need an

application that can guarantee the security of sending SMS messages because there are millions of

unprotected messages. The selection of the right algorithm is another important aspect, seen from the

level of importance of the message. A good algorithm makes encryption unpredictable so cannot be

disassembled using any method.

AES algorithm is an encryption method that uses asymmetry keys and licenses to use

confidentiality [16]. SMS services have used in every field, such as banking for m-banking,

e-commerce, and personal transactions.

Figure 1. GSM service structure [15]

In addition to discussing cryptography [8]-[10], this study also discusses data compression. how

much encrypted data can be compressed using the huffman algorithm.

A research conducted with a comparative analysis of the performance and security of the most

useful algorithms: RC6 (Rivest Cipher) and RSA (Rivest Shamirdan Adleman). This study aims to

determine the complexity of encryption and decryption algorithms better. For proof, it develops

Android-based SMS encryption and decryption prototypes. The results show that all messages can be

encrypted using the key generated before sending to the recipient. Encrypted messages also have

better security and time performance[1]. Another research proposes an encrypted JPEG image

capture scheme. Retrieval is based on the Huffman code in the JPEG bitstream. There are three

parties involved, namely the content owner, cloud server, and authorized users. The testing results

shows that the proposed scheme can ensure confidentiality, integrity, and format compatibility of the

JPEG image. Besides taking pictures in terms of various factors the quality of the image is still fairly

effective [2]. Huffman is also applied for image compression based on Huffman coding

[11]-[12]-[14]. Conducted a research by taking variables based on eye image compression and image

compression methods. Compression is performed at the stage of image filtering by wavelet

transforms to remove excessive information in the image. The proposed Huffman method is used in

the image encoding process. From the test results obtained that the image format size JPEG images

can be reduced in the same image effect [3].

Other research proposes a fast algorithm for decoding Huffman based on the recursion Huffman

tree. This research was conducted by focusing on the efficiency of Huffman's decoding time. To

speed up the decoding process numerical interpretation is used. The results of tests carried out from

the test file show that the average number of symbols decoded at one time for the proposed method

ranges from 1.91 to 2.13 with the processing unit condition is 10. From the experimental comparison

shows that the decoding time of the proposed method increased rapidly. This is based on a

comparison of conventional binary tree search methods with the compressed-level Huffman decoding

method [4]. By using other encryption methods, a research has also been conducted which aims to

improve SMS security using RSA cryptography. SMS is applied as a media for complaints for the

public in making complaints against fraud in the regional head election. From the Avalanche Effect

test results obtained an average of 10.44%. While from the brute force testing with two digit private

key 32,768 brute force trials can be performed with a key search time of 3.7 miliseconds per key [5].

Method

In making a message security application with cryptographic algorithm AES (Advanced

Encryption Standard) and the Huffman algorithm, the prototype model is used, which is a looping

system development model that provides a systematic and structured approach in developing a

system. The following shown in Figure 2 are the stages in the prototype model that the author uses in

building applications.

Figure 2. Research State

Huffman Algorithm

Huffman algorithm is a simple compression algorithm compiled by David Huffman in 1952 [6]. This

algorithm included in the type of lossless data compression, which is data compression that does not

eliminate or change the number of bytes and stored according to the original data [13]. Figure 3 show

the Huffman Compression Flowchart and Figure 4 show the Huffman Decompression Flowchart.

Figure 3. Huffman Compression Flowchart [7]

Problem Identification and Literature

Study

Analysis

AES Cryptography & Huffman

Compression

Design and Implementation

Cryptography & Compression into

SMS Application base on android

Prototype Testing

Figure 4. Huffman Decompression Flowchart [7]

AES Algorithm

AES algorithm that was socialized by the National Institute of Standards and Technology (NIST) in

November 2001 created as a new encryption standard that developed from the DES (Data Encryption

Standard) algorithm through several stages of comparison with other algorithms. Vincent Rijmen

coined this algorithm, and Joan Daemen became the winners of the new algorithm replacement

contest replacement DES [9]. AES algorithm uses substitution, permutation, and the number of

cycles applied to each block to be encrypted and decrypted. For each spin, AES uses a different key.

The key to each round is called the round key. AES works in the form of bytes or characters, the block

size for the AES algorithm is 128 bits (16 bytes). Following in Figure 5 is Encryption Prcess, and in

Figure 6 is Decryption Process of AES algorithm.

Figure 5. AES Encryption Process Flow Chart [17]

Figure 6. AES Decryption Process Flow Chart [17]

Method

This process discusses the application of AES cryptography with Huffman compression in the SMS

messaging system.

AES Encryption Process

AddRoundKey

Perform XOR logic or initial round between the initial plaintext / state and the cipher key.

Round of Nr-1 times.

The process carried out in each series are:

1) SubBytes or substitution bytes using the substitution table (SBox).

2) ShiftRows or through permutations of data bytes from different array columns.

3) MixColumns or randomize data in each state array column.

4) AddRoundKey or perform XOR operations between data and keys.

Final Round is the process for the last round of SubBytes, ShiftRows, and AddRoundKey

Key Expansion

The AES algorithm executes a primary key and creates a key expansion to produce a key

schedule. The key represented as a word (w [i]). Similar to the state, but the state element is the

cipher key. The key expansion required is AES Nb (Nr + 1) word, so that in AES-128 requires 4

(10 + 1) word = 44 words. Some steps that are carried out to create a key schedule are rotword (),

subWord, and Rcon (). Rotword () is if w [i] represented by an array of rows or columns into rows

(transpose), then it can be described by sliding once to the left in the array position as shift rows ()

does in the second row. For example w [i] = (a0, a1, a2, a3), we get Rotword (w [i]) = (a1, a2, a3,

a0). subword (), which substitutes every byte converted to hexadecimal form with S-box table as

well as what SubBytes () does. e.g. w [i] = CF4F3C09, by substituting into the S-Box table get

Subword (w [i]) = 8A84EB01, where CF becomes 8A, 4F becomes 84, 3C becomes EB, and 09

becomes 01. Rcon [i] is a fixed component (Constanta) word of the round during the calculation

process of expansion into the key schedule. The value on the AES-128 that uses ten times the

rotation.

public static byte[] encryptSMS(String secret key, String message){

 try {

 byte[] returnArray;

 Key key = generateKey(secretkey);

 private static Key generateKey(String secretkey) throws

 Exception {

Key key = new SecretKeySpec(secretkey.getBytes(),"AES");

return key;

 }

 Cipher c = Cipher.getInstance("AES");

 returnArray = c.doFinal(message.getBytes());

 return returnArray;

 } catch (Exception e) { e.printStackTrace(); byte[] returnArray = null; return

 returnArray;

 }

}

Huffman Compression Process

Count the Frequency

Tree is a concept that describes a directed graph that is connected and does not contain trajectories.

int[] Frequency = newint[257];

Arrays.fill(Frequency, 1);
FrequencyTable freqtable = new FrequencyTable(Frequency);

HuffmanEncoder enc_cipher = new HuffmanEncoder(out);

enc_cipher.codeTree = freqtable.buildCodeTree();
int x = 0;

while (true) {
 int c = in.read();

 if (c == -1)

 break;
 enc_cipher.write(c);

 freqtable.increment(c);

 x++;

 if(x < 262144 &&isPowerOf2(i)||x % 262144 == 0)
 enc_cipher.codeTree =freqtable.buildCodeTree();

 if (x % 262144 == 0)
 freqtable = new FrequencyTable(frequency);

 }

enc_c.write(256);

Make a Huffman Tree for each character from root to leaf to 1 Huffman Tree

The Huffman code is a prefix code that consists of a collection of binary codes and has the

characteristic that no binary code is the starting point for other binary codes.

The prefix code draws as a binary tree that contains values or labels. On the left branch, the binary

tree is labeled 0 while on the right branch, and it is labeled 1. The series of bits formed at each line

from root to leaf is a prefix code for the paired characters to produce a Huffman tree. Proses

encoding.

public CodeTree buildCodeTree() {
 Queue<NodeWF> pqueue = new PriorityQueue< NodeWF >();

 for (int i=0; i< freq.length;i++) {
 if (freq[i] > 0)

 pqueue.add(new NodeWF (new Leaf(i),i, freq [i]));

 }
 for(int i = 0; i< freq.length&&pqueue.size()< 2; i++){

 if (i >= freq.length || freq [i] == 0)
 pqueue.add(new NodeWF (new Leaf(i), i, 0));

 }

 if (pqueue.size() < 2)
 thrownew AssertionError();

 while (pqueue.size() > 1) {

 NodeWF nf_1 = pqueue.remove();

 NodeWF nf_2 = pqueue.remove();

 pqueue.add(new NodeWF (
 newInternalNode(nf_1.node, nf_2.node),

 Math.min(nf_1.lowestSymbol, nf_2.lowestSymbol),
 nf_1. freq + nf_2. freq));

 }
 Returnnew CodeTree((InternalNode)pqueue.remove().node, freq.length);

}

Huffman Decompression Process

It is known that the code for a symbol / character cannot be the beginning of another symbol code to

avoid ambiguity in the decompression process. Because each Huffman code generated is unique, the

decoding process can be done easily.

a. Do iterations to read binary string bits starting from the root.

b. For each bit traverse the corresponding branch

c. Code a series of bits that have been read with characters in the leaf.

int[]Frequency = new int[257];
Arrays.fill(Frequency, 1);

FrequencyTable freqtable = new FrequencyTable(Frequency);

HuffmanDecoder dec = new HuffmanDecoder(in);
dec.codeTree = freqtable.buildCodeTree();

int count = 0;
while (true) {

 int symbol = dec.read();

 if (symbol == 256) // EOF symbol
 break;

 out.write(symbol);

 freqTable.increment(symbol);

 count++;
 if (count < 262144 && isPowerOf2(count) || count % 262144 == 0) // Update code tree

 dec.codeTree = freqtable.buildCodeTree();
 if (count % 262144 == 0) // Reset frequency table

 freqtable = new FrequencyTable(Frequency);

}

AES Decryption Process

public static byte[] decryptSMS(String KunciRahasiaString, byte[] PesanTerenkripsi)throws Exception {

 generateKey(KunciRahasiaString);

 private static Key generateKey(String KunciRahasiaString) throws

 Exception { Key key = new SecretKeySpec(KunciRahasiaString.getBytes(), "AES");

return key;

 }

 Cipher c = Cipher.getInstance("AES");

 c.init(Cipher.DECRYPT_MODE, key);

 byte[] decValue = c.doFinal(PesanTerenkripsi);

 return decValue;

}

Implementation

Figure 7 displaying the system design that we build.

Figure 7. System Design

Main menu AES Application are shown as Figure 8. Figure 9 show the form of creating message

SMS. Figure 10 show inbox and the form of message decrypt.

Figure 8. Main Menu

Figure 9. Create Message Form

Figure 10. Inbox and Message Decryption Form

Testing

At this stage, we do some measurement of system from the variable of performance and functional.

Table 1. Encryption and Compression Results

Character AES algorithm without

compression

AES Algorithm with Huffman

Compression

H B114E95845481ED3BF7C187

D2D02D93B

@-,^|bV`H”Ÿî ?!. 1SŠ -€

halo, apa kabar?

608A8BB7C4A5548CCD0F6

271AF32586108C81B39D5F2

366FA2C3AFDF047A5E2A

4,4=0xxZjNl ÙˉÑÃæè2/

ìHñ°®î_á ç¿ü Yœ_ñ9ç·þ%p

apa yang kamu lakukan

akhir pekan ini?

DC1FFA08711128A5D5E

D3613BBD8CF9D9A803B

DA7E6957D24E57AEE750

775BCD9F50AD00180252

487B7E0924F03BBC5D

B?+B@pL^RD BŠË .,4=ĐÑ

 Œ0 øsŒ ° äœÁ7

p7pãÏ_yóÂŒùBg;1Ýå3››{Ç[

ŒŸùô¶BYÖà

Kalo kamu tidak ada

aktivitas pada waktu

akhir pekan, maukah

kamu mengikuti kontes

lari?

3D7567EB9DFCF2B62A2816

1C89026CB2B076F0CF859D

91906F632F7BC1D49BB12E

3E8C4F71264595DD044A398

EB39D68442708AB6C195B2

2294019CB0F485F6A50A588

D2ED2437DE0636C1FA8133

8CD3EF3A9C43330C929956

A9573A6FE2

1A20.0zvVpÜØÜÑA¥cGÆz

.D`oRÝõ í1 |8ÓÀ Üö ¯=Â§
3,W±uÂ§KlËŸùB°êúz}/gx_¯gw

}oôôýåm}}>ï3¿öYeMvgÕéÓÖú

Bä’1Æ2c

;.2!ò:õ%x]j±Ve>>JC®°n3ÏÁ;¥ w x$\

Figure 11. Graph Comparison of the Number of Character AES Encryption and AES Encryption with Huffman

Compression

Table 2. Presentation Compression Effisiency

Number of

Characters

Encryption Encryption with

Compression

Percentage

1 32 28 12,5%

16 64 52 18,8%

45 96 80 16.7%

88 192 151 21,4%

 17,35%

Summary

The conclusion of the AES algorithm research is, that the text encoding in the Android-based SMS

application has increased the amount of text. Resulting in an increased cost of sending messages, but

with the addition of Huffman compression so that the lack of AES algorithm can be covered and can

be accepted by the public because it is easier to operate and cheaper. Encryption test results are: AES

algorithm cryptography can be applied to secure SMS and get unreadable ciphertext results, and the

level of compression efficiency of Huffman gets 17.35% more efficient than without compression.

References

[1] T. Mantoro, Laurentinus, N. Agani, and M. A. Ayu, “Improving the security guarantees,

authenticity and confidentiality in short message service of mobile applications,” in Proceedings of

2016 4th International Conference on Cyber and IT Service Management, CITSM 2016, 2016.

[2] Liang, Haihua & Zhang, Xinpeng & Cheng, Hang, “Huffman-code based retrieval for encrypted

JPEG images”, Journal of Visual Communication and Image Representation. 61.

10.1016/j.jvcir.2019.03.021, 2019.

AES Encryption with Huffman Compression AES Encryption

88 Character

45 Character

16 Character 1 Character

0

50

100

150

200

250

Comparison of AES With and
Without Huffman Compression

[3] Yuan, Shuyun & Hu, Jianbo,” Research on image compression technology based on Huffman

coding”. Journal of Visual Communication and Image Representation. 59.

10.1016/j.jvcir.2018.12.043, 2018.

[4] Lin, Yih-Kai & Huang, Shu-Chien & Yang, Cheng-Hsing., “A fast algorithm for Huffman

decoding based on a recursion Huffman tree”, Journal of Systems and Software. 85. 974–980.

10.1016/j.jss.2011.11.1019, 2012.

[5] D. Y. Sylfania, F. P. Juniawan, L. Laurentinus, and H. A. Pradana, “SMS Security Improvement

using RSA in Complaints Application on Regional Head Election’s Fraud”, Jurnal Teknologi dan

Sistem Komputer, vol. 7, no. 3, pp. 116-120, Jul. 2019.

https://doi.org/10.14710/jtsiskom.7.3.2019.116-120

[6] Q. Zhou, K. W. Wong, X. Liao, and Y. Hu, “On the security of multiple Huffman table based

encryption,” J. Vis. Commun. Image Represent., 2011.

[7] M. Ramakrishnan and R. Sujatha, “Cf-Huffman code based hybrid signcryption technique for

secure data transmission in medical sensor network,” Int. J. Appl. Eng. Res., 2015.

[8] N. N. Mohamed, H. Hashim, Y. M. Yussoff, M. A. M. Isa, and S. F. S. Adnan, “Compression and

encryption technique on securing TFTP packet,” in ISCAIE 2014 - 2014 IEEE Symposium on

Computer Applications and Industrial Electronics, 2015.

[9] C. A. Sari, G. Ardiansyah, D. R. I. Moses Setiadi, and E. H. Rachmawanto, “An improved

security and message capacity using AES and Huffman coding on image steganography,”

Telkomnika (Telecommunication Comput. Electron. Control., 2019.

[10] D. Kapoor Sarmah and N. Bajpai, “A new horizon in data security by Cryptography &;

Steganography,” Int. J. Comput. Sci. Inf. Technol., 2010.

[11] J. H. Pujar and L. M. Kadlaskar, "A new lossless method of image compression and

decompression using Huffman coding techniques," J. Theor. Appl. Inf. Technol., 2010.

[12] J. S. Vitter, “Design and Analysis of Dynamic Huffman Codes,” J. ACM, 1987.

[13] E. Satir and H. Isik, “A Huffman compression based text steganography method,” Multimed.

Tools Appl., 2014.

[14] R. Arshad, A. Saleem, and D. Khan, “Performance comparison of Huffman Coding and Double

Huffman Coding,” in 2016 6th International Conference on Innovative Computing Technology,

INTECH 2016, 2017.

[15] Laurentinus, “Implementasi Kriptografi Dan Kompresi SSM Menggunakan Algoritma RC6 Dan

Algoritma Huffman Berbasis Android,” Jurnal Ilmiah Informatika Global, 2017.

[16] E. Andreas, “Aplikasi Kriptografi File DOC, DOCX, JPG dan PDF dengan Metode AES dan

Kompresi Huffman,” Kriptografi AES Dengan Kompresi Huffman, 2014.

[17] D. Darwis, R. Prabowo, and N. Hotimah, “Kombinasi Gifshuffle, Enkripsi AES dan Kompresi

Data Huffman untuk Meningkatkan Keamanan Data,” J. Teknol. Inf. dan Ilmu Komput., 2018.

